Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35625696

RESUMO

The liver neutralizes endogenous and exogenous toxins and metabolites, being metabolically interconnected with many organs. Numerous clinical and experimental studies show a strong association between Non-alcoholic fatty liver disease (NAFLD) and loss of skeletal muscle mass known as sarcopenia. Liver transplantation solves the hepatic-related insufficiencies, but it is unable to revert sarcopenia. Knowing the mechanism(s) by which different organs communicate with each other is crucial to improve the drug development that still relies on the two-dimensional models. However, those models fail to mimic the pathological features of the disease. Here, both liver and skeletal muscle cells were encapsulated in gelatin methacryloyl and carboxymethylcellulose to recreate the disease's phenotype in vitro. The 3D hepatocytes were challenged with non-esterified fatty acids (NEFAs) inducing features of Non-alcoholic fatty liver (NAFL) such as lipid accumulation, metabolic activity impairment and apoptosis. The 3D skeletal muscle tissues incubated with supernatant from fatty hepatocytes displayed loss of maturation and atrophy. This study demonstrates the connection between the liver and the skeletal muscle in NAFL, narrowing down the players for potential treatments. The tool herein presented was employed as a customizable 3D in vitro platform to assess the protective effect of albumin on both hepatocytes and myotubes.

2.
Cancer Lett ; 520: 48-56, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229060

RESUMO

The deregulation of PI3K/Akt signaling is among the most causes in inducing the acquisition of a metastatic phenotype in breast cancer cells, leading to Epithelial-Mesenchymal Transition (EMT). Inhibition of the PI3K/Akt pathway is known to be beneficial in the clinical setting. However, the activation of secondary pathways and toxicity profiles of available inhibitors, hindering optimal therapeutic results. Preliminary studies showed that myo-Inositol inhibits the PI3K/Akt pathway by exerting a pleiotropic anti-tumor action. Herein, we demonstrate that myo-Inositol triggers a prompt and profound remodeling of delineated expression pattern in triple-negative breast cancer cells (MDA-MB-231). Consequently, it inhibits metastasis and tumor progression through miR-125a-5p transcription and the subsequent inhibition of IP6K1. In contrast, hormone-responsive breast cancer cells (MCF-7) are insensitive to myo-Inositol. This is due to the persistence of MDM2 synthesis promoted by estrogen-dependent pathways. Conversely, the counteraction of estrogen effects recovered the sensitivity to myo-Inositol in the hormone-responsive model. Overall, these results identify a novel axis primed by miR-125a-5p to downregulate IP6K1 gene that inhibits metastasis. Thus, administration of myo-Inositol can activate this axis as a molecular target therapy in breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , MicroRNAs/genética , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Inositol/farmacologia , Células MCF-7 , Metástase Neoplásica , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/patologia , Transdução de Sinais/efeitos dos fármacos
3.
Molecules ; 25(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992691

RESUMO

Inositol and its phosphate metabolites play a pivotal role in several biochemical pathways and gene expression regulation: inositol pyrophosphates (PP-IPs) have been increasingly appreciated as key signaling modulators. Fluctuations in their intracellular levels hugely impact the transfer of phosphates and the phosphorylation status of several target proteins. Pharmacological modulation of the proteins associated with PP-IP activities has proved to be beneficial in various pathological settings. IP7 has been extensively studied and found to play a key role in pathways associated with PP-IP activities. Three inositol hexakisphosphate kinase (IP6K) isoforms regulate IP7 synthesis in mammals. Genomic deletion or enzymic inhibition of IP6K1 has been shown to reduce cell invasiveness and migration capacity, protecting against chemical-induced carcinogenesis. IP6K1 could therefore be a useful target in anticancer treatment. Here, we summarize the current understanding that established IP6K1 and the other IP6K isoforms as possible targets for cancer therapy. However, it will be necessary to determine whether pharmacological inhibition of IP6K is safe enough to begin clinical study. The development of safe and selective inhibitors of IP6K isoforms is required to minimize undesirable effects.


Assuntos
Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/uso terapêutico , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Fosfato)/antagonistas & inibidores , Antineoplásicos/química , Carcinogênese/induzido quimicamente , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Inibidores Enzimáticos/química , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/induzido quimicamente , Neoplasias/enzimologia , Neoplasias/patologia , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...